C-1xx-1250AC-FDFB-SLCx

Features

- Duplex LC Single Mode Transceiver
- Small Form Factor Multi-sourced $2 x 5$ Pin Package
- Complies with IEEE 802.3 Gigabit Ethernet
- 1270 nm to 1610 nm Wavelength, CWDM DFB Laser
- Single +3.3V Power Supply
- LVPECL Differential Inputs and Outputs
- LVTTL Signal Detection Output
- Temperature Range: 0 to $70^{\circ} \mathrm{C}$
- Class 1 Laser International Safety Standard IEC 825 compliant
- Solderability to MIL-STD-883, Method 2003
- Pin Coating is $\mathrm{Sn} / \mathrm{Pb}$ with minimum $2 \% \mathrm{~Pb}$ content
- Flammability to UL94V0
- Humidity RH 5-85\% (5-90\% short term) to IEC 68-2-3
- Complies with Bellcore GR-468-CORE
- Uncooled laser diode with MQW structure
- 1.25 Gbps Ethernet Links application
- 1.06 Gbps Fiber Channel application
- RoHS compliance available

Absolute Maximum Rating					
Parameter	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	$\mathrm{V}_{\text {cc }}$	0	3.6	V	
Output Current	lout	0	30	mA	
Soldering Temperature	-	-	260	${ }^{\circ} \mathrm{C}$	10 seconds on leads only
Operating Temperature	$\mathrm{T}_{\text {opr }}$	0	70	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40	85	${ }^{\circ} \mathrm{C}$	

Recommended Operating Condition					
Parameter	Symbol	Min.	Typ.	Max.	Unit
Power Supply Voltage	V_{cc}	3.1	3.3	3.5	V
Operating Temperature (Case)	$\mathrm{T}_{\mathrm{opr}}$	0	-	70	${ }^{\circ} \mathrm{C}$
Data rate		-	1250	-	Mbps

C-1xx-1250AC-FDFB-SLCx

Transmitter Specifications						
Parameter	Symbol	Min	Typical	Max	Unit	Notes
Optical						
Optical Transmit Power	$\mathrm{P}_{\text {。 }}$	-5	-	0	dBm	C-1xx-1250AC-FDFB-SLC2
Optical Transmit Power	$\mathrm{P}_{\text {。 }}$	-3	-	+2	dBm	C-1xx-1250AC-FDFB-SLC3
Optical Transmit Power	P_{0}	0	-	+5	dBm	C-1xx-1250AC-FDFB-SLC4
Output center Wavelength	λ	$\lambda_{p}-5.5$	λ_{p}	$\lambda_{p}+7.5$	nm	$\lambda_{\text {P }}=1 \times x 0 \mathrm{~nm}, \mathrm{C}-1 \mathrm{xx}-1250 \mathrm{AC}-$ FDFB-SLCx
Output Spectrum Width	$\Delta \lambda$	-	-	1	nm	-20 dB width
Side Mode Suppression Ratio	Sr	30	35	-	dBm	$\mathrm{CW}, \mathrm{P}_{\mathrm{O}}=5 \mathrm{~mW}$
Extinction Ratio	ER	9	-	-	dB	
Output Eye	Compliant with IEEE 802.3					
Optical Rise Time	tr	-	-	0.26	ns	20\% to 80\% Values
Optical Fall Time	tf	-	-	0.26	ns	20\% to 80% Values
Relative Intensity Noise	RIN	-	-	-120	dB/Hz	
Total Jitter	TJ	-	-	0.27	ns	Measured with 27-1 PRBS

Transmitter Specifications

Parameter	Symbol	Min	Typical	Max	Unit	
Electrical						Notes
Power Supply Current	I_{CC}	-	-	180	mA	Maximum current is specified at Vcc= Maximum @ maximum temperature
Transmit Enable Voltage	VEN	0	-	0.8	V	
Transmit Disable Voltage	VD	2.0	-	VCC	V	
Data Input Current-Low	I_{IL}	-200	-	-	$\mu \mathrm{A}$	
Data Input Current-High	I_{IH}	-	-	200	$\mu \mathrm{~A}$	
Differential Data Input Voltage	$\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}$	650	-	2000	mV	AC-coupled

Receiver Specifications

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Optical						
Sensitivity	-	-	-	-22	dBm	Measured with $2^{7}-1$ PRBS, BER $=10^{-12}$
Maximum Input Power	P_{in}	-3	-	-	dBm	
Signal Detect-Asserted	Pa	-	-	-22	dBm	Measured on transition: low to high
Signal Detect-Deasserted	Pd	-38	-	-	dBm	Measured on transition: high to low
Signal Detect-Hysteresis		1.0	-	-	dB	
Wavelength of Operation		1100	-	1620	nm	

C-1xx-1250AC-FDFB-SLCx

Receiver Specifications						
Parameter	Symbol	Min	Typical	Max	Unit	Note
Electrical						
Power Supply Current	I_{CC}	-	-	120	mA	The current excludes the output load current
Differential Data Output Voltage	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$	800	-	1600	mV	AC-coupled
Signal Detect Output Voltage-Low	$\mathrm{V}_{\mathrm{SDL}}$	-	-	0.5	V	LVTTL
Signal Detect Output Voltage-High	$\mathrm{V}_{\text {SDH }}$	2.0	-	-	V	

PIN	Symbol	Notes
1	RxGND	Directly connect this pin to the receiver ground plane
2	TxVcc	+3.3 V dc power for the receiver section
3	SD	Active high on this indicates a received optical signal(LVTTL)
4	RD-	Receiver Data Out Bar (LVPECL)
5	RD+	Receiver Dat Out (LVPECL)
6	TxVcc	+3.3 V dc power for the transmitter section
7	TxGND	Directly connect this pin to the transmitter ground plane
8	TxDIS	Transmitter disable (LVTTL)
9	TD+	Transmitter Data In (LVPECL)
10	TD-	Transmitter Data In Bar (LVPECL)
Attaching Posts		The attaching posts are at case potential and may be connected to chassis ground. They are isolated from circuit ground.

C-1xx-1250AC-FDFB-SLCx

Recommended Circuit Schematic

Figure 1: Recommended Transceiver and Receive Data Terminations

The split-loaded terminations for ECL signals need to be located at the input of devices receiving those ECL signals.
The power supply filtering is required for good EMI performance. Use short tracks from the inductor L1/L2 to the module Rx Vcc and Tx Vcc. A GND plane under the module is required for good EMI and sensitivity performance.

C-1xx-1250AC-FDFB-SLCx

Signal Detect

The C-1xx-1250AC-FDFB-SLCx transceivers are equipped with LVTTL signal detect output. The standard LVTTL output eliminates the need for a LVPECL to LVTTL level shifter in most applications.

Figure 2: Signal Detect

Power Coupling

A suggested layout for power and ground connections is given in figure 3A below. Connections are made via separate voltage and ground planes. The mounting posts are at case ground and should not be connected to circuit ground. The mounting posts are at case ground and should not be connected to circuit ground. The ferrite bead should provide a real impedance of 50 to 100 ohms at 100 to 1000 MHz . Bypass capacitors should be placed as close to the 10-pin connector as possible.

VALUES:

C1, C2 $=1000 \mathrm{pF}$,
C3, $=0.1 \mathrm{uF}$
C4, = 10 uF ,
L1, L2 $=$ Real impednce of 50 to
100 Ohms to 1000 MHz .

Figure 3: Suggested Power Coupling-Electrical Schematic

C-1xx-1250AC-FDFB-SLCx

Package Diagram

Units in mm(inch)

Printed Circuit Board Layout Consideration

A fiber-optic receiver employs a very high gain, wide bandwidth transimpedance amplifier. This amplifier detects and amplifies signals that are only tens of $n A$ in amplitude when the receiver is operating near it's limit. Any unwanted signal current that couples into the receiver circuitry causes a decrease in the receiver's sensitivity and can also degrade the performance of the receiver's signal detect (SD) circuit. To minimize the coupling of unwanted noise into the receiver, careful attention must be given to the printed circuit board.

At a minimum, a double-sided printed circuit board(PCB) with a large component side ground plane beneath the transceiver must be used. In applications that include many other high speed devices, a multi-layer PCB is highly recommended. This permits the placement of power and ground on separate layers, wich allows them to be isolated from the signal lines. Multilayer construction also permits the routing of signal traces away from high level, high speed sinal lines. To minimize the possibility of coupling noise into the receiver section, high level, high speed signals such as transmitter inputs and clock lines should be routed as far away as possible from the receiver pins.

Noise that couples into the receiver through the power supply pins can also degrade performance. It is recommended that a pi filter be used in both transmitter and receiver power supplies.

EMI and ESC Consideration

LuminentOIC transceivers offer a metalized plastic case and a special chassis grounding clip. As shown in the drawing, this clip connects the module case to chassis ground then installs flush through the panel cutout. This way, the grounding clip brushes the edge of the cutout in order to make a proper contact. The use of a grounding clip also provides increased electrostatic protection and helps reduce radiated emission from the module or the host circuit board through the chassis faceplate. The attaching posts are at case potential and may be connected to chassis ground. They should not be connected to circuit ground.

Plastic optical subassemblies are used to further reduce the possibility of radiated emission by eliminating the metal from the transmitter and receiver diode housings, which extend into connector space. By providing a non-metal receptacle for the optical cable ferrule, the gigabit speed RF electrical signal is isolated from the connector area thus preventing radiated energy leakage from these surfaces to the outside of the panel.

C-1xx-1250AC-FDFB-SLCx

Recommended Board Layout Hole Pattern

DIMENSION IN MILLIMETER (INCHES)

NOTES:
1.THIS FIGURE DESCRIBE THE RECOMMAND CIRCUIT BOARD LAYOUT FOR THE SFF TRANSCEIVER. 2.THE HATCHED AREAS ARE KEEP-OUT AREAS RESERVED FOR HOUSING STANDOFF. NO METAL TRACES OR GROUND CONNECTION IN KEEP-OUT AREAS.
3.THE MOUNTING STUDS SHOULD BE SOLDERED TO CHASSIS GROUND FOR MECHANICAL INTEGRITY.

Recommended Panel mounting

DIMENSION IN MILLIMETER (INCHES)

C-1xx-1250AC-FDFB-SLCx

Ordering Information

Available Options:
 C-1xx-1250AC-FDFB-SLC2
 C-1xx-1250AC-FDFB-SLC3
 C-1xx-1250AC-FDFB-SLC4

> C-1xx-1250AC-FDFB-SLC2-G5 C-1xx-1250AC-FDFB-SLC3-G5 C-1xx-1250AC-FDFB-SLC4-G5

Part numbering Definition:

Warnings:

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.
Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notes:

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at LuminentOIC's sole and absolute discretion. LuminentOIC warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and LuminentOIC expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

LuminentOIC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and LuminentOIC makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. LuminentOIC customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify LuminentOIC for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that LuminentOIC is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact LuminentOIC to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.
© LuminentOIC, Inc. 2003
All rights reserved

